
A brief introduction by Kiefer Weis
github.com/kiefer-dev
linkedin.com/in/kiefer-weis

What the duck is MVC?

Photo by Ann H from
www.pexels.com

Photo by George Becker from
www.pexels.com

Picture this if you will.

You’re building a web application to quack (track) your
beautiful, extensive, world-renowned rubber ducky
collection. You threw together your project in a
weekend because you thought you could bang this
one out - you figured “hey, I can just separate the
JavaScript into two files - the client-side and the
server-side. That’s enough organization, right?” Big
mistake, bucko, because now you’re lost and scared
in a duck pond full of spaghetti code.

You didn’t want to bother thinking
about how you could efficiently
structure your program, now it’s 11pm
the night before the National
Rubber Ducky Convention and your
website is BROKEN.

“Where did I go wrong?!” you ask
yourself. “How could I possibly have

avoided all this spaghetti??”

Should’ve looked into the MVC architectural
paradigm before building your program.

You ducked up.
Photo by icon0.com from

www.pexels.com

It doesn’t require learning anything new - it’s just
an “architectural paradigm” to organize things!

MVC stands for
MODEL / VIEW / CONTROLLER. It’s
simply a way of separating out pieces
of your program so that they’re more
manageable, readable, and modular.

Photo by Anna Shvets from
www.pexels.com

Even this baby
could understand

the principles of
MVC, if they

wanted to!

It all starts with the user.
Our web application shows
a page in the browser that
lets the user view every
rubber ducky in their
personal Rubber Ducky
Collection database.

For this example, the user
wants to add a brand new
rubber ducky to the
database.

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

The user uses their browser
to enter the info about their
new ducky (represented by
that lovely green duck over
there), and clicks “add.” This
sends a request to our
Router, which is a file we’ve
specifically setup to listen
for requests from the
browser.

Our request here is
represented by a nice
yellow circle.

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

The Router hears the
request - it’s a request to
add a ducky to the db, so
it’s a POST request. It also
knows that its intended
route is to /ducky.

All of the logic to hear the
request and send it out is
still contained within one
file, our Router file.
It sends the request along
to the appropriate file (a
Controller).

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

We have Controller files
setup for each of our routes
- here, the /ducky route.
This Controller file contains
functions to handle every
possible action on the
/ducky route, and since
our Router knew it was a
POST request, we’ve sent it
to the addDucky function
in our Controller file. This
function has access to all
the data about the new
ducky added by our user.

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

Our Model file includes a
schema that tells our
program how new items
should look in the
database. The Controller
file checks with our Model
file to see how the data
should be setup, and
passes along the data
about the new ducky to the
database.
The ducky has been added!

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

Now the database
responds to the Model,
which lets our Controller
know that a new ducky has
been added to the
database.

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

The user needs to know
that the ducky has
successfully been added,
which means their browser
needs to update. This is
where our View comes in.

The Controller lets our
View know that things have
been changed, and the
View Engine updates the
“view” by generating new
HTML/CSS, using
something like EJS.

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

The View sends this
freshly-generated page
back to the /home
Controller (as opposed to
the previous /ducky
controller), which causes
the user’s browser to
update so that they can see
it.
Boom! The user is served a
fresh page in their browser
that shows the new ducky
in the database!

Flowchart made with zenflowchart.com
Duck image by Anthony from www.pexels.com

The important thing to note is that each
step of this process was separated out
into being handled by individual files:

the Controllers, the Model, and the
Views. We also separated out the logic

for directing requests into a specific
Router file.

Photo by cottonbro from
www.pexels.com

By separating each step of this
process into individual M/V/C files,
we’ve organized our program and

have saved ourselves a huge future
headache.

How, you ask? Well…

Decide you want to
collaborate on your
project and invite a
coworker to look at

your program?
No problemo!

Oh quack! You organized
your program into its
separate functional parts
using MVC? Thank gosh I
don’t have to dig through
any more spaghetti!

Photo by Alexander
Suhorucov from
www.pexels.com

Uh oh, a bug occurred
at a specific point in

the process of adding
a new duck to the

database? It ain’t no
thang! You know

right where to go to
debug!

Dangit, I thought I’d go
unnoticed…
unfortunately for me,
you decided to
organize your program
using MVC. My life is
over!!

Photo by Pixabay
from
www.pexels.com

Decide you suddenly
hate EJS and also you
want to try swapping
out your Model? No

worries, MVC’s
inherent modularity

means you don’t have
to worry about

messing up the rest
of your program!

Photo by Ketut
Subiyanto from
www.pexels.com

Thanks to MVC, we can
easily swap out entire
sections of our program
and everything will still be
functional! Just like these
interlocking plastic
building toys. See, Junior?

googoo

MVC’s usefulness in
building web applications is
severely understated, I’m
going to use it for all of
my programs from now on

The CONTROLLER files hold all of

the CRUD logic. The router sends
along the user’s request from the
browser to the proper controller
file, based on the request’s route
and method (post/get/put/delete).

The CONTROLLER talks to both
the MODEL and the VIEW.

To recap:

The MODEL file includes the model
for how data should look, and
sends/receives data to & from the
database. It passes this data back to

the CONTROLLER.

To recap:

The VIEW is what generates the
stuff that eventually gets sent to
the user’s browser for them to see
(frontend HTML/CSS). It takes
instructions from the
CONTROLLER, builds the view, and

sends it back to the CONTROLLER
to be show to the user.

To recap:

You should always have a
structural plan for your web
applications before building
them. Try separating
processes into individual
files for the MODEL, the
VIEW, and the
CONTROLLER!
Otherwise, next time YOU might find yourself trying to debug
a huge plate of spaghetti code to fix your program the night
before the National Rubber Ducky Convention 😥

